
Class 25
Files

Class Methods

• Class type has methods, which are special functions
• Call method:

• VarName.MethodName(Arguments)

Input from/Output to files

• This is performed using streams

• A stream on a computer performs input/output operations

• It can be viewed as either a destination or a source of indefinitely
long characters

• C++ comes with a library called fstream that includes methods for
dealing with files

Input from/Output to files

• Class types:
• ifstream – used to read information from files
• ofstream – used to create files and to write information to files

• #include<fstream>
• Class methods that apply to both ifstream and ofstream:

• .open(fileName) – connects a variable to a file
• .is_open() – checks to see if the stream is connected to the file
• .close() – closes a file

• ifstream also has .eof() and .get()

Example

ofstream f; // f is used to access our output file
f.open(“out.txt”); // connects f to file out.txt
f << “Writing this to a file” << endl; // inserts content into the file
f.close(); // properly closes the connection to the file

Example 1
#include<iostream>
#include<fstream>
using namespace std;
int main(){

ofstream f;

f.open("out.txt");

if(!f.is_open()){ // checks to see if f is connected to the file

cout << "No such file exists." << endl;

return 0;

}

f << "Hello" << endl; // insertion operator

f << "World" << endl;

f.close();

return 0;

}

ifstream

• Considerations when reading files:

•Have you reached the end of the file (is there no more data left to
read)?
• Answer this question with .eof()

•What if you would like to read the input character by character?
• Use .get() to obtain the next character in the file
• This also reads white space, such as spaces, new lines, etc.
• Used to obtain very detailed input

Example

ifstream f; // f is used to extract from our input file
f.open(“out.txt”); // connects f to out.txt
string s;
f >> s; // Extracts first string in file connected to f and stores in s
f.close(); // properly closes the connection to the file

Example 2
#include<iostream>
#include<fstream>
using namespace std;

int main(){

ifstream f;

f.open ("out.txt");

string x, y;

f >> x; // extraction operator

cout << "The first string in your file is " << x << endl;

f >> y;

cout << "The next string in your file is " << y << endl;

f.close();

return 0;

}

Example

ifstream f;
f.open(“out.txt”);
while(!f.eof()){ // while you have not yet reached the end of the file

char x = f.get(); // get next character
cout << x; // print character to monitor

}
f.close();

The above goes through file f character by character and prints whatever it
sees to the monitor

Example 3
#include<iostream>
#include<fstream>
using namespace std;

int main(){
ifstream f;
f.open ("out.txt");
while(!f.eof()){ // while you have not yet reached the end of the file

char x = f.get(); // get next character
cout << x; // print character to monitor

}
f.close();
return 0;

}

Arguments to main

• Alternative title line to main
•We can set up a main program to work with arguments
• These are called command-line arguments

mars> ./a.out file1 file2

Main title line for command-line arguments

•Old title line:
• int main()

•New title line:
• int main(int argc, char *argv[])
• This version of the main title line allows main to take command-line
arguments
• argc is the number of inputs
• argv is an array storing the inputs
• argv is an array of c-strings

Example 4
#include<iostream>
using namespace std;

int main(int argc, char *argv[])){ // Command line arguments are stored in an array called argv

for(int i = 0; i < argc; i++){

cout << argv[i] << endl;

}

return 0;

}

argc, argv

mars>./a.out file1 file2

int main(int argc, char *argv[])

argc: how many things did the user type?
argv: what did the user type?

Example 5

int main(int argc, char *argv[]){
ifstream f1;
ofstream f2;
f1.open(argv[1]); // connect f1 to command-line argument
f2.open(argv[2]); // connect f2 to command-line argument
while(!f1.eof()){

char x = f1.get(); // go through f1 char by char
f2 << x; // and copy each char to f2

}
return 0;

}

